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Abstract 
The problem of finding the optimal sequence of 

temperature values on the cascades is expressed in terms of 
the system of linear equations. A multi-iteration search 
allows obtaining the solution with required accuracy. The 
method can be used for an arbitrary selection of 
thermoelectric (TE) materials on the cascades, taking into 
account temperature behavior of TE parameters. The method 
can allow for thermal losses on the TE module substrates.  

The analysis of the solutions yielded by the offered 
method is given. It is shown that there exist a number of 
solutions close to the optimum. Each of them can be related 
to a new configuration of a TE module, which is very 
important for a designer’s degrees of freedom. 

Introduction 
The major requirement for a TE module is to provide a 

given cooling capacity at a given temperature by the smallest 
possible power consumption and acceptable design. If the 
number of TE module stages and TE materials per stage are 
known, the basic task is to find the optimal sequence of 
temperature values on the cascades to ensure minimum of 
the heating coefficient or the maximum coefficient of 
performance (COP). 

This problem was studied in many papers[1,2,3,4]. But it 
is only the Optimal Control Theory, based on the Pontriagin 
maximum principle [5], that can exhaust the problem, taking 
into account TE parameters temperature behavior. However 
the application of the Pontriagin maximum principle, if 
based on the kinetic equation [4], though describes a single 
TE element correctly, does not properly characterize the 
operation of a pellet in a TE module for the reason that a 
pellet ought to be described in terms of not absolute but of 
differential Seebeck coefficient. If instead of the kinetic 
equation the thermal conductance equation is applied, the 
Pontriagin principle transformations [5] can yield the correct 
results both for a TE element and a pellet but so far this 
work has not been consistently carried out. 

A less sophisticated and nonetheless consistent method 
would make the problem physically more clear and easier to 
cope with. It would be also interesting to research the 
nearest vicinity of the optimum, which is not within the task 
of the Optimal Control approaches. 

In practice it is often assumed that a multistage TE 
module maximum COP is provided when COPi of the 
cascades are equal [1,2,6]. Certainly, while the TE module 
temperature difference (∆T) is fixed, the less delta ∆Ti on the 
i-th stage, the higher COPi on it but at the same time ∆Ti on 
the other stages grow and their COPi drop. Therefore the 

case of equal COPi is not bad but how near to the optimum 
is it? Papers [3,4] say this mode is not exactly optimal but 
the calculating models applied leave this statement 
unconvincing as the one [3] is too particular on Z(T) and the 
other [4] is, though general on optimum, vague on its 
vicinity. 

This paper faces the problem of finding an optimal 
temperature distribution along the cascades in a multistage 
TE module when no simplifying assumptions on Z(T) [2,3] 
are induced. The aim of the paper is to offer an algorithm 
allowing to find a solution of the problem with required 
accuracy. We assume that the intermediate substrates 
thermal conductance is high enough to ignore the thermal 
losses on them. 

Algorithm to Find Optimal Temperature Distribution on 
the Cascades 

Consider an N-stage TE module, the cold and hot sides 
temperature given: T0 and TN. We numerate the cascades 
from the cold one (cascade 1) to the hot one (cascade N) – 
see Fig. 1. 
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Figure 1: Stages and temperature values numeration 

 
Introduce µ  as the heating coefficient of the module and 

iµ as that of the i-th cascade (i=1,…,N). Assume that each 
cascade is characterized by its own figure-of-merit Zi, (i = 1, 

…,N) and the factor 
2
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+= − , (i = 1,…,N). 

Further we consider Zi constant per stage, given by a certain 
averaging procedure of the temperature dependent function 
Zi(T). This approach is reasonable as the consideration of the 
heat balance on a pellet ends allows expressing the equations 
in the traditional form via effective constant thermal 
parameters with different values on the cold and hot ends 
[7]. 

To find the optimal temperature sequence on the 
cascades it is necessary to minimize the module heating 
coefficient µ , i.e. to solve the equations system: 
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One has treated this system not once but always 
confining oneself to a model temperature dependence of 

iM [2,3]. For unrestricted values of Zi the solution has never 
been sought for. Our objective is to fill the gap. 

Keeping in mind that the averaging procedure makes Zi a 
function of temperature Zi= Zi(Ti,Ti-1) we can rewrite system 
(3) in the following form )1N,...,1i( −= : 
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Suppose we have a solution )0(
iT  of Eqs. (4) close to the 

true solution. Then the true iT  have the following form: 

where iδ  is a small value.  
Following Eq. (5) the expressions for iZ  and iM can be 

written in the form: 
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Here )0(
iZ and )0(

iM  correspond to )0(
iT  and iZδ , iMδ are 

small corrections when proceeding to iT .  

Expanding iZ , iM  into the series about )0(
iT  and 

taking the first-order derivatives only, we obtain the 
following: 
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Within this designation we transform Eqs. (4) into the following )1N,...,1i( −= : 
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In Eqs. (8) we used the notations: 
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Expanding the terms in the parentheses of the 
denominator in Eqs. (8) into the series of iδ  and taking the 
linear ones, we come to the following equations linear in iδ : 
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In system (10) we set 00 =δ , 0N =δ , as the 
corresponding temperature values are fixed. The left part 
coefficients in Eqs. (10) compose a triagonal matrix. 

 
The coefficients in Eqs. (10) are expressed as (11)-(13): 
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Eqs. (10), though may seem cumbersome, can be easily 
solved with the help of the standard programming tools. It is 
convenient to take a zero approach )0(

iT  for the case iM  is 
independent of the cascade number [2]: 

N/i
0N0

)0(
i )T/T(TT = , i=0,1, …N. 

After solving Eqs. (10) and finding iδ  we calculate iT  
by Eq. (5) and take the found values as the zero approach for 
the next step, etc. The process converges fast enough. The 
values ii M,Z  are necessary to correct at each step.  

The obtained solution is not restricted by any 
assumptions on ii M,Z .  

In the suggested method we can consider corrections ∆  
for thermal losses on TE module substrates. Then for the i-th 
cascade the hot side temperature should be Ti-∆/2 and the 
cold side temperature should be Ti-1+∆/2. 

Below we apply the method to calculating  the optimal 
temperature distribution on a 5-stage TE module cascades.  

An Example of the Method in Work 
The temperature distribution is calculated for a 5-stage 

TE module cooling from 308 K down to 175 K. TE 
materials are taken with a higher value of the Seebeck 
coefficient at room temperature for smaller numbers of the 
cascades.  

As effective Zi in the calculations we may take that 
averaged over the values on the ends of the i-th stage: 
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Here we assume that the Thomson effect makes more 
realistic effective Z at the cascade hot sides [7], the 
corresponding values are: 
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The results of the calculations are given in Table 1. It 
shows that even the zero-approach gives satisfying results 
(4% worse than in the optimum case), so from the very start 
of the iteration iδ  are small enough for a fast converging. 
The iδ -values for the given data are not higher than 10-2 K. 

 

Table 1: The temperature distribution on the 5-stage TE 
module cascades  

Zero-approach Equal COPi Optimum 
i 

Ti, K µi Mi T, K µi Mi Ti, K µi Mi 

0 175   175   175   
1 195.9 4.587 1.193 191.2 3.120 1.188 191.9 3.289 1.190 
2 219.4 3.528 1.225 211.4 3.121 1.216 213.1 3.280 1.218 
3 245.7 3.031 1.252 236.0 3.121 1.239 237.7 3.059 1.242 
4 275.1 2.608 1.290 267.8 3.111 1.281 269.5 3.055 1.283 
5 308 2.397 1.318 308 3.111 1.315 308 2.912 1.316 

µ = 306.62 µ = 294.16 µ = 293.51 
We see that the method based on equal COPi and the 

method developed here (optimum cooling mode) yield the 
results very close in heating coeefficients µ, though the 
difference in temperature distribution and µi is quite 
noticeable. At the next step of the optimal module 
simulation it is bound to influence the module configuration. 
It may be shown that in the case of equal COPi the cascading 
coefficients (the ratio of pellets numbers of the neighboring 
cascades) fluctuate near the same value. In the optimum 
mode the cascading coefficients tend to be smaller on the 
bottom (hotter) stages. In this mode the pyramide of a series-
connected TE module expands to the bottom not so equal-
rate for the heating coefficients on the upper stages exceed 
those on the lower ones. That may be gained by pellets 
number variation, advantageous geometry of pellets and 
optimal electric current. 

Discussions and Conclusions 
The data obtained (see Table 1) confirm the conclusion 

[3] that the traditional method of equal COPi gives good 
results not because it is correct but because the temperature 
dependences of the figure-of-merit in traditional 
chalcogenides of Bi-Sb are such that the solution happens to 
fall near the true extremum, which is very flat. However in 
our algorithm it is not necessary to restrict M(T) [2,3] to one 
power function, which may not be true for all cascades. 

Let us investigate the vicinity of the optimum. Suppose 
T1min – T4min is a sequence of optimal temperature values for 
the optimum cooling mode, and T1e – T4e is that for the equal 
COPi. Let us imagine we are moving along the parametric 
curve across the points given by these Ti:  

( ) ( )4,..,1i,TTTT eiminieii =−−= τ  (17) 

where τ is a parameter.  
At 1−=τ  the values of temperature Ti correspond to the 

optimum cooling mode and at 0=τ  they relate to the equal 
COPi cooling mode. While moving along this parametric 
trajectory (depicted in Fig. 2) we obtain the function µ(T1, 
T2, T3, T4) in a range around the minimum 
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Figure 2: Dependence of the heating coefficient on the 

parameter τ 
 

We see that the heating coefficient minimum is captured 
by 1−=τ , and in the direction  opposite the equal COPi 
( 0=τ ) at the same distance ∆τ =1 from the optimum we 
intercept nearly the same µ-value. However at 2−=τ  the 
distributions of  temperature and heating coefficients on the 
cascades (and, consequently, the module geometry) are quite 
different and are given in Table 2. 

 
Table 2: The temperature values and heating coefficients 

sequence on the cascades of the 5-stage module at 2−=τ . 
i Ti , K µi Mi 

1 192.58 3.4684 1.1896 
2 214.70 3.4408 1.2193 
3 239.38 2.9998 1.2439 
4 271.24 3.0058 1.2847 
5 308 2.7349 1.3165 

 
The overall heating coefficient is equal to 294.29, which 

is very close to that in the mode of equal COPi (see Table 1). 
Therefore this method of finding true optimum of a 

multistage TE module operation shows that there are many 
solutions for the temperature distributions in its nearest 
vicinity. These distributions provide the heating coefficient 
quite close to the optimal. The case of equal COPi is one of 
them. Each of the solutions is related to a specific module 
cofiguration (number of pellets, pellets geometry per stage) 
and optimal parameters. That is why within slight deviations 
from the optimum it is possible to select a module design to 
meet TE module requirements. 

The suggested method refers to the case when cascading 
coefficients are relatively moderate (around 3, which is 
normal for commercial TE modules), and when the 
temperature on the substrate can be considered constant. 

The method is welcome for optimal TE modules 
engineering. 
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