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Abstract

Thermoelectric (TE) technique and TE Cooler (TEC)
exposure becoming more and more involved, both a
manufacturer and a user are facing the problem of modeling
and characterizing TEC mathematically. We suggest one of
the approaches to do it based on (quasi-) tri-diagonal rate
matrix of rate equations describing one-dimensional thermal
dynamics through all intermediate stages and layers, including
ceramics and solders, as well as a possible housing and
temperature dependence of the parameters.

Introduction

Either in TEC developing or constructing, in TEC
controlling or testing one has to deal with the proper
mathematical and, nowadays, computer aid. The problems of
vital concern are the following:

= Mathematical modeling prior to technical
development and constructing

=  Selecting a suitable TEC from a variety

»  TEC operation modeling in real conditions

This problem has already been considered and touched
upon in a number of papers"* and others.

We suggest one of the approaches to do it supported by the
software program TECcad. The approach is based on the set
of rate equations describing one-dimensional thermal
dynamics through all intermediate stages and layers, including
ceramics and soldering.

In the simplest case describing TEC means solving a set of
temperature linear rate equations. We consider this rate
equations should be well adjusted for simulating an N-stage
TEC (N can be of any value), allowing for a finite thermal
conductance of insulating and metal participants, thermal
exchange through leading wires, air and radiation.

This paper goal is to offer a possible step-by-step approach
for solving the two-way problem: Cooling parameters <> TEC
structure.

The architecture of the approach is defined by increments.

Sections 1 and 2 proceed from modeling one-stage TEC’s
to N-stage ones where N is selectable. The problem of these
sections is limited to the simplest case: no radiation, no air
conductance between the TEC legs and no heat sink, or cap,
no parameters thermal dependence. Section 3 solves the
problem of allowing for temperature dependence of
thermoelectric parameters. Section 4 eliminates the limits of
the previous sections allowing for radiation, air conductance
between the TEC legs, heat sink and/or cap. Section 5 applies
the theory developed in Sec. 1-4 to the problem of maximum
and optimal TEC operation modes. In conclusion we describe
all the above results as the grounding of computer simulation,
optimal selection and constructor-aiding program TECcad.

1. Single-stage TEC

In the simplest case to describe a TE cooler operation
means to solve a set of rate temperature linear equations.
First consider a one-stage TE cooler with = pellets. In Fig. 1.1
you see such a cooler model with junctions temperatures
marked.
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Fig.1.1. Temperature distribution in a one-stage TE
cooler

The set of equations describing this model is like this:
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where k, =aS, , a is heat conduction value from the upper
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ceramics surface Sos ko =Ko ———————
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is metal junction
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thermal conductivity; «,, is metal junction specific thermal

conductivity; 7, is metal junction width, x is a pellet width, d
is the distance between pellets. We took into account, that the
S,

metal junctions number on each surface is n/2. k, =x, l_ is

ceramics thermal conductivity; «_ is ceramics specific

thermal conductivity; S, /. is ceramics footprint area and width
respectively; i=0 is referred to the upper ceramics; i=/ is to
the lower one; R,r are resistance values of a pellet and metal

d+(2/3 .
P e # 4 p.p. -corresponding
XX

junction, R :pé, r=
specific resistances; s is pellet cross-section, S is the
corresponding stage cold side area.

The first equation in the set is present independently
of the number of stages. The other four characterize the stage
itself. The matrix view is more convenient for computer

simulation. It is given in Appendix Al.
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2. Multi-stage TE Cooler Mathematical Modeling

Let us consider the general case of an N-stage Peltier module.
This case schematically is presented in Fig. 2.1.
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Figure 2.1. A multi-stage TEC structure with all the
intermediate temperature values.

N-stage TE cooler involves a set of 4N+1 equations (2.1).
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The corresponding matrix can be found in Appendix A2.

3. Temperature Dependence of Thermoelectric Material
Parameters

In equation (2.1) all the coefficients are considered to be
independent of material temperature. However the
temperature differential on a TEC must be taken into

account’,’. In a way the picture of temperature distribution can
be visualized as in Fig. 3.1.
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Figure 3.1. A principal view of the temperature
differential along a TEC

The picture suggests it be necessary to consider
temperature dependence of material parameters. For Bismuth
Telluride with commonly used free carriers concentration
(about 10" cm™) these characteristic curves look like those in
Fig. 3.2a-c.
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Fig.3.2a. Temperature dependence of Seebeck

coefficients for p- and n-types of Bi,Te; (here and in Fig.
3.2b, 3.2¢ the results' are used))
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Fig.3.2b.  Temperature dependence of electrical  conductance of the inner part of the TEC should be rewritten

conductivities for p- and n-types of Bi,Te; as:
| k'=k(1+by ), 4.1)
WK = where
xem 2 by =Byt + B s 42)

B...and B, are corrections for inter-pellet thermal
conductance values through air thermal conductivity and

(T
o) radiation, respectively:
X 10° B =22 L) 4.3)
K(T) * P
_________ Here the pellets filling term is:
3 n;s
X 10 ﬁ ZT 5 (4.4)
where S is the cold side dimensions, #; is pellets number of a
stage;
11.5 s
10 B =7—kGTf (1-B) 4.5)
160 180 200 220 240 260 280 300 320 34 n
T.K where o is Boltzman constant, yis thermal emissivity. As for

(4.5) it can only be regarded as a rough estimation.

Thus the terms £; in the program matrix should be
modified regarding (4.1) — (4.5).

Taking into account a heat sink (see Fig. 4.1) makes us
deal with an additional equation in set (2.1) containing one
new unknown temperature on the borderline of the last
ceramics and the sink.

Fig.3.2c. Temperature dependence of thermal
conductivities for p- and n-types of Bi,Te;

We consider thermal dependences like this. Along each
cascade Bi,Te; Seebeck coefficient, thermal and electrical
conductivities are taken at the corresponding stage hot side
temperature. For example, we consider o4(T) as (T ,o)=const
at the i-th stage. The conciliation of this approach with real
parameters gradients and the Thomson effect are given in A3. w2

The pattern of the modernized matrix A2 for the first stage

is transformed in the following way: Heat sink
w1, 7,1, 7, 4 k(7,4 (7,) a1
k(T )4k, (T;) ot 1)1k (7, ),

The added indices refer to the corresponding temperatures. Figure 4.1. A TEC on the heat sink
Temperature dependence of electrical resistance in free terms . .
. . . . Here is the relevant equation:
is switched on likewise:

—0-k,T, key (Tyni =T )=K(T)y =Ty )=0, (46)
0 In terms of the matrix (see A2) it is equivalent to the
n, 5 following additional line and changes concerning two last
——(R,(T,)+R, (T, )+r)I .
2 lines:
“LL(R, (T, )R, (T, )+l (3.2)
iy iy N =
0 Tkm, —[7]%@ +k, ) 0 Ty 0 4.7)
. : o (k" +x) T ) \-KT

The problem has now become non-linear. However, it can 0 0 c -\t
be solved by means of iteration, each time our dealing with
the matrix of constant terms. Scap

The algorithm is like this. First we solve the equations set
with all the terms at 300K. Then we use the found temperature L
distribution to specify the term at each level. That yields a I
new temperature distribution. The procedure is cycled until
the necessary accuracy is met.

4. Radiation, Inner Air Losses, Cap Interaction and Heat
Sink Finite Thermal Conductance

At the above described iteration we can also take into
account radiation and inner air losses. It can be shown that

. . ; ; Figure 4.1. A TEC on the heat sink and under the cap
within the simplest assumptions the effective thermal
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Including cap interaction makes us introduce an effective

thermal conductivity kK’ between the upper ceramics

(substrate) and the cap inner top:

K=k, +x

= Rair conv

+K yad »

where at normal state and 300K «,, =0.026W /mxK ;

K

conv

=axL[W/mxK]; a=4W/m> xK (see Ref.) -

(4.8)

approximate value of the convective heat transfer coefficient

c® cap

per the surface unit; «,,, =26

al’
- the upper ceramic surface, 6=5.6 x10™®* W/m’

emissivity; S
K

¢

S.S. ol

, 0 - surface

The average temperature 7 is 1/2(T, +T, ) assuming the

cup thermal conductance high enough for the cup temperature
equal that of the heat sink. The heat amount
0., =K’ (T, -T, ) should be additional to the active heat

load Q (see egs.(1.1), (2.1)).

5. Standard and Detailed Curves

The approach described above is to be applied to analyzing
TEC operation in different modes. Here we present both
standard and detailed curves characterizing TEC’s in

maximum and optimum modes.

These theoretical outputs can be obtained within the all the

results discussed here.

5a. Standard Plots
Definitions

Standard curves: the curves, specifying a TEC referred to
the maximum delta temperature and maximum heat amount

modes

The standard plots involve matrix (A2) directly applying

temperature dependence functions (see Fig. 3.2a-c) and

corrections (4.1)-(4.4). The standard plots for 2MC10-009-20

are given below.
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Figure 5a.l. Temperature difference versus device

current. Defines ATmax and Imax.
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Figure 5a.2. Temperature difference versus heat pumping
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Figure 5a.3. Voltage versus temperature difference.
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Figure 5a.4. C.O.P. versus temperature difference.

5b. Detailed Plots
Definitions

Detailed curves are the curves, specifying a TEC in the
optimal (recommended) mode, i.e., the mode at maximum
Coefficient of Performance (C.O.P):

The detailed plots are yielded by a slightly modified
matrix. The example of this modification for a 1-stage TEC is
presented in (A1.2). The difference from the standard curves
case is that the parameter Q is not set a priori and changed
step by step until AT=0 but is an independent variable whereas
AT is known and shifted from 0 to ATmax, the latter defined
from the standard plots. Below one can see the detailed plots
for 2MC10-009-20.
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difference

Once the standard plots allow to define extreme limits, the
detailed plots give the idea of the most economical TEC
operation and recommended cooling mode.
6. Discussion

Armed with this mathematics and graphical support we
can solve the problem of reasonable TEC selection and TEC
operation optimization with the help of the so-called TECcad
program. A User is capable to:

1. obtain standard plots for a TEC and probe it in the
maximum mode

2. obtain detailed plots for a TEC and probe it in the
optimum mode

3. select an optimal TEC: input desirable cooling
parameters (AT and Q) or/and electrical and
geometrical requirements (cold and hot side areas
and height, upper limits of the device current and
voltage) and get a TEC or a set of TEC’s applicable
based on a search cycle in the data bank of TEC'’s;
analyze the selected cooler in operation by
visualizing operational curves specifying the selected
TEC in maximum and optimal modes;

4. suggest one’s own structure, thermoelectric
properties and surrounding conditions and analyze
the proposed cooler in operation by visualizing
operational curves specifying the selected TEC in
maximum and optimal modes;

5. examine a TEC in a real housing, that is mounted on
a heat sink and under the cap.

Standard

plots TECcad

Modeling in
real housing

Detailed TEC
plots v constructing

TEC
selection

Fig. 6.1. The program TECcad applications.

Figure 6.1 illustrates the above listed options.
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Appendixes

Al. One-stage Matrix

~(ky k., ) k.,
k., —(k,, +nk,./2)
0 nk,,/2 -n
0 0
0 0

And here is the modification of (A1.1) for the detailed curves problem.
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0 0 0

0 0

0 -1 0

A2. Multi-stage Matrix
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A3. Dependence o(T) and Thomson Effect

Let us consider a TEC, indices 0 and 1 identifying the cold
and hot sides respectfully.

In comparison with™® we do not take into account the
Seebeck coefficient o varying within a leg length. Once we do
it, we must consider the Thomson effect as well for the reason
that

80, =Idrl (A3.1)
where
_pdo
t=T T (A3.2)

Let us suppose there is o differential along the TEC pellet
as depicted at Fig. (A3.1). Therefore the Thomson effect takes
place and produces additional cooling as can be viewed by the
direction of the Thomson heat flux Qr in figure A3.1.
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Fig. A3.1. Seebeck coefficient differential and the
Thomson effect
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As shown in paper’ the exact rate equations in this case
undergo transformation with all inner heat sources effects
being recalculated to the pellets ends and so the material
parameters being effective now. For visual aiding we rewrite
them’ here.

1
O o 1Ty *EIZRE;M —kyoAT =0,

’ : (A3.4)
2
o AT +31~REW 7keﬂ,AT:Q,

As Drabkin and Dashevsky’ go to prove, the effective Z-
value specifying ATmax is defined by the “eff’-parameters of
the first equation in (A3.3), that is at the cold side
temperature:

2
Qoo

Zy =

(A3.4)

R eff 0 k eff 0
In the paper considered the exact expressions for
O . Ry .k, are given but here we restrict ourselves just to

qualitative explanation.
The Thomson phenomenon is more effective at the cold
end of the pellet for Z—? is higher there, that is
Qg >0(Ty ), (A3.5)
As for the effective electrical resistance, it is lower at the
pellet cold end (the smaller the temperature value is, the less
effective Joule heating takes place), so

Rego <R, (A3.6)

where R - pellet resistance.

The same relation was stressed by Buist®. Inequalities
(A3.5), (A3.6) were proved by numerical calculation in
paper'’. That means the effective figure-of-merit at cold side
temperature exceeds a non-effective one at the same
temperature, as if shifting all the parameters values to higher
temperature. In our work we simplified this by taking all the
parameters at the hot side temperature of a stage.
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