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Introduction 

When designing thermoelectric (TE) 
generators it is an accepted practice to use 
segmented legs, i.e. legs comprised of 
consecutively attached TE materials for 
operation under various temperature 
intervals. This is due to the absence of 
thermal junctions resulting in smaller 
temperature losses in such legs compared to 
coupling of individual stages made of 
materials optimized for operation in 
respective temperature intervals. The 
segment size of such a leg and the generator 
current is picked on the basis of 
maximizing generator COP at given 
temperatures of hot and cold ends of the 
leg. This is a problem belonging to those of 
optimization control, and it is convenient to 
solve it using the Pontryagin Maximum 
Principle [1]. This method was successfully 
used for optimization of TE coolers [2] and 
multistage TE generators. [3]. This paper 
gives a method for calculation of optimal 
segment size of the generator leg and 
expressions for optimal currents. 
Optimizing Operation of the Generator 
Thermoelement with Segmented Legs 

Let us consider a generator 
thermoelement with legs composed of 
various thermoelectric materials. The layout 
for such thermoelement is shown in Fig. 1.  

 
 
 

Let the p -type leg consist of pN  
segments, and the n -type leg consist of nN  
segments, respectively. The value of pN  
can differ from that of nN . We will be 
marking parameters and variables related to 
a segment with two indices: t  is always 
attributed to the conductivity type, and i  
refers to the number of the segment. The 
Seebeck coefficient is α , electrical 
conductivity is σ , resistivity is ρ , and 
thermal conductivity is κ . The 
temperatures attributed to the segment ends 
with coordinate tiX  are marked as tiT , and 
the temperature limit to the right of tiX  is 
denoted as ( )0+tixT , and to the left is 
denoted as ( )0−tixT . The heat conduction 
equation for i -segment of the leg is:  

( ) ( ) ( ) 0,jTj,jT tititititi =∇−+∇∇ αρκ
rrr    (1) 

where tN,..2,1i;p,nt == , j
r

 is the current 
density through the sample. Further on we 
will consider the problem in one dimension. 
This way it is possible to turn one-
dimensional vectors into scalars, 
respectively changing the signs for these 
values in Eq. (1) and considering the 
current and thermal flux to be always 
positive. As the current direction is 
different in the legs of n - and p -types, and 
the product of jα retains the sign, j  is 
positive, the Seebeck coefficient will be 
α . The equations system (1) for this case 
is as follows: 

Fig. 1 Layout of the segmented 
thermoelement leg 
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is the thermal flux density divided by the 
current density. 

System (2) is solved under the following 
boundary conditions: the temperature of the 
cold leg end ( ) ct TT =01 , the temperature of 
the hot leg end ( ) htN TT

t
=1 , on the segments 

connection 
( ) ( )( ) ( )( ) tiittiitit xTxT δ−+=− −−− 00 111 , where 

symbol tiδ denotes temperature losses 
commutation between the segments. 
Besides, ( ) ( )( ) ( )( )00 111 +=− −−− ittiitit xqxq . 
This problem is reduced to the Cauchy 
problem and is solved using standard 
approaches. 

Hamiltonian [1] for equations system (2) 
is a sum of partial Hamiltonians for the leg 
segments: 
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where 
ti1ψ and 

ti2ψ  are variables, 
conjugated [1] respectively to T  and q . 
The conjugated equations system for 
variables 

ti1ψ and 
ti2ψ   is 
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where, in accordance with [2]: 
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In the optimal mode to maximize COP 

each thermoelement leg shall provide 
maximum COP. Moreover each segment 
also shall operate at maximum COP.  That 
is why the condition for optimal solution is 
the minimum of the functional 
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Considering the system connections, the 
generalized functional J  is: 
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 The transversal conditions [2] give the 
boundary conditions for the solution (5): 
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The optimal current optj  is 
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where the symbols ( )tiinix  and  ( )tiendx  
denote the beginning and the end of the 
corresponding segment.  When 

1== np NN  and the thermoelectric 
parameters do not depend on the 
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temperature, Eq. (12) yields the known 

expression 
( )
( ) 2/11 ch

ch
opt TTZ

TT
j

−++

−
=

ασ
[4]. 

The algorithm for finding the optimal 
segment length is the following: we take 
any distribution of the segment lengths; at 
zero approximation we consider the 
distribution of temperature along the leg to 
be linear and substitute thermoelectric 
coefficients with their average temperature 
values; after that we calculate the values of 
( )0j  and ( )( )00

1tq , pnt ,= . Then we solve 
system (2) by changing ( )0

1tq , achieving 
boundary conditions pntTT ht tN

,, == .  

After determining the distribution of 
temperatures we use (11) to determine 
boundary conditions for 

tt Nipnt
i

..2,1;,,2 ==ψ , solving system (5), 
and determine values 

tt Nipnt
i

..2,1;,,1 ==ψ . We calculate the 

current at the first approximation ( )1j  using 
(12). As the values  tt Nipnt

i
..2,1;,,1 ==ψ  

do not satisfy condition (11), we change the 
values ( )tt Nipntx

i
1..2,1;,, −== to satisfy 

(11), approximating dependency ( )x
it1ψ  , at 

least linearly, we find the distribution of 
segment lengths at the first approximation. 
After that we take the new value for the 
current and new distribution of segment 
lengths, solve equation (2) and repeat the 
procedure described above until the 
changes in thermoelement COP stop 
exceeding the limits of the set accuracy. 

TE generator EMF value E  is calculated 
as: 
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And the internal resistance R  equals 
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If cross-sections of the segments are 

arbitrary, the solution is simpler as there is 
no need to set the distribution of the 

segment lengths. The problem can be 
solved for the segment lengths equaling 
one, and after that the necessary lengths are 
picked out, the geometry factor being used. 
Conclusion 

This paper gives a method for calculation 
of the optimal segment size of the TE 
generator segmented leg and expressions 
for the optimal currents, the method of 
Pontriagin maximum control being applied. 
The results are applicable for the 
engineering mathematical simulation of TE 
generators. 
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