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Introduction

When designing thermoelectric (TE)
generators it is an accepted practice to use
segmented legs, i.e. legs comprised of
consecutively attached TE materials for
operation under various temperature
intervals. This is due to the absence of
thermal junctions resulting in smaller
temperature losses in such legs compared to
coupling of individual stages made of
materials optimized for operation in
respective  temperature intervals. The
segment size of such a leg and the generator
current is picked on the basis of
maximizing generator COP at given
temperatures of hot and cold ends of the
leg. This is a problem belonging to those of
optimization control, and it is convenient to
solve it using the Pontryagin Maximum
Principle [1]. This method was successfully
used for optimization of TE coolers [2] and
multistage TE generators. [3]. This paper
gives a method for calculation of optimal
segment size of the generator leg and
expressions for optimal currents.

Optimizing Operation of the Generator
Thermoelement with Segmented Legs

Let us consider a  generator
thermoelement with legs composed of
various thermoelectric materials. The layout
for such thermoelement is shown in Fig. 1.
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Fig. 1 Layout of the segmented
thermoelement leg
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Let the p-type leg consist of N,
segments, and the n-type leg consist of N,
segments, respectively. The value of N,

can differ from that of N,. We will be
marking parameters and variables related to
a segment with two indices: t is always
attributed to the conductivity type, and i
refers to the number of the segment. The
Seebeck coefficient is «, electrical
conductivity is o, resistivity is p, and
thermal  conductivity is x. The
temperatures attributed to the segment ends
with coordinate X, are marked as T, , and

the temperature limit to the right of X, is
denoted as T(x; +0), and to the left is
denoted as T(x; —0). The heat conduction
equation for i-segment of the leg is:

V(g VTy)+(1.0)ps ~Ta(1.Vay)=0 (1)
where t=n,p;i=12,.N,, ] is the current
density through the sample. Further on we
will consider the problem in one dimension.
This way it is possible to turn one-
dimensional vectors into  scalars,
respectively changing the signs for these
values in Eg. (1) and considering the
current and thermal flux to be always
positive. As the current direction is
different in the legs of n-and p -types, and

the product of ¢jretains the sign, j is
positive, the Seebeck coefficient will be
|| The equations system (1) for this case

is as follows:
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is the thermal flux density divided by the
current density.

System (2) is solved under the following
boundary conditions: the temperature of the

cold leg end T,(0)=T,, the temperature of
the hot leg end T, (1)=T,, on the segments
connection
Tt(i—l)(xt(i—l) - 0)= Ty (Xt(i—l) + 0)_ O, Where
symbol ¢, denotes temperature losses
commutation between the segments.
Besides, qt(i—l)(xt(i—l) - 0): Qi (Xt(i—l) + 0)'
This problem is reduced to the Cauchy
problem and is solved using standard
approaches.

Hamiltonian [1] for equations system (2)

is a sum of partial Hamiltonians for the leg
segments:
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where variables,

Wi, and W, ~are
conjugated [1] respectively to T and q.
The conjugated equations system for
variables y;; and ;. is
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where, in accordance with [2]:
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In the optimal mode to maximize COP
each thermoelement leg shall provide
maximum COP. Moreover each segment
also shall operate at maximum COP. That
is why the condition for optimal solution is
the minimum of the functional
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Considering the system connections, the

generalized functional J is:
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The transversal conditions [2] give the
boundary conditions for the solution (5):
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The optimal current j, is
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where the symbols (Xini)ti and (xend )ti

denote the beginning and the end of the
corresponding segment. When
N,=N,=1 and the thermoelectric

parameters do not depend on the



temperature, Eq. (12) yields the known
aG(Th _TC) [4]
1+1+2(T, -T,)/2
The algorithm for finding the optimal
segment length is the following: we take
any distribution of the segment lengths; at
zero approximation we consider the
distribution of temperature along the leg to
be linear and substitute thermoelectric
coefficients with their average temperature
values; after that we calculate the values of

j® and g, (0)*, t=n,p. Then we solve
system (2) by changing g, (0), achieving

expression jo, =

boundary  conditions TtNt =T,,t=n,p.

After determining the distribution of
temperatures we use (11) to determine
boundary conditions for
Vo, t=n,p; 1=12.N¢, solving system (5),

and determine values
py, t=n,p;i1=12.N,. We calculate the

current at the first approximation j(l) using
(12). As the values ;. ,t=n,p;i=12.N,

do not satisfy condition (11), we change the
values X, ,t=n,p;i=12.(N-1)to satisfy

(11), approximating dependency w, (x) |, at

least linearly, we find the distribution of
segment lengths at the first approximation.
After that we take the new value for the
current and new distribution of segment
lengths, solve equation (2) and repeat the
procedure described above until the
changes in thermoelement COP stop
exceeding the limits of the set accuracy.

TE generator EMF value E is calculated
as:

dT;
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i=1,..,Nt

And the internal resistance R equals

) dx:

R= i (T )T,
tz% Jlxt(ifl) p( t)dTi [ (14)
i=1,..,N;

If cross-sections of the segments are
arbitrary, the solution is simpler as there is
no need to set the distribution of the

segment lengths. The problem can be
solved for the segment lengths equaling
one, and after that the necessary lengths are
picked out, the geometry factor being used.
Conclusion

This paper gives a method for calculation
of the optimal segment size of the TE
generator segmented leg and expressions
for the optimal currents, the method of
Pontriagin maximum control being applied.
The results are applicable for the
engineering mathematical simulation of TE
generators.
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